# ANNUAL DRINKING WATER QUALITY SURVEILLANCE REPORT 2019



National Water Reference Laboratory

Royal Center for Disease Control

**Ministry of Health** 

# Contents

| 1.                                                                                                                                                                                                                         | Urba  | an Dr                | inking Water Quality Monitoring System                                    | 5    |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|---------------------------------------------------------------------------|------|--|--|--|--|--|--|
| -                                                                                                                                                                                                                          | l.1.  | Para                 | ameters for Urban Health Centers                                          | 5    |  |  |  |  |  |  |
| <ol> <li>1.1. Pa</li> <li>1.2. Mo</li> <li>1.3. Wa</li> <li>1.4. Re</li> <li>1.4.1.</li> <li>1.4.2.</li> <li>1.4.3.</li> <li>1.4.4.</li> <li>2. Rural Do</li> <li>2.1. Ov</li> <li>2.2. Re</li> <li>3. Limitati</li> </ol> | Mor   | 1onitoring Frequency |                                                                           |      |  |  |  |  |  |  |
| -                                                                                                                                                                                                                          | L.3.  | Wat                  | er Treatment                                                              | 6    |  |  |  |  |  |  |
| -                                                                                                                                                                                                                          | L.4.  | Rep                  | ort                                                                       | 6    |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 1.4.  | 1.                   | Bacteriology (Thermotolerant coliform)                                    | 6    |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 1.4.2 | 2.                   | Physio-Chemical report                                                    | .11  |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 1.4.3 | 3.                   | Chemical report                                                           | .14  |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 1.4.4 | 4.                   | Major Sources of Chemical contaminants in drinking water:                 | . 14 |  |  |  |  |  |  |
| 2.                                                                                                                                                                                                                         | Rura  | al Dri               | nking Water Quality Monitoring (RDWQM)                                    | . 18 |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 2.1.  | Ove                  | rall status                                                               | . 18 |  |  |  |  |  |  |
|                                                                                                                                                                                                                            | 2.2.  | Rep                  | ort                                                                       | . 18 |  |  |  |  |  |  |
| 3.                                                                                                                                                                                                                         | Limi  | itatio               | n of the report                                                           | . 20 |  |  |  |  |  |  |
| 4.                                                                                                                                                                                                                         | lssu  | es an                | d recommendation:                                                         | .21  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                          | 4.1.  | Rec                  | ommendations from WaterCaRD (Water Capacity Rating Diagnostic) Assessment | . 22 |  |  |  |  |  |  |
| 5.                                                                                                                                                                                                                         | Ann   | ex1:                 | Urban Water Treatment Plant details                                       | .24  |  |  |  |  |  |  |

# Abbreviation

- BDL: below detection limit
- BDWQS: Bhutan Drinking Water Quality Standard
- CFU: colony forming unit
- E. Coli Escherichia Coli
- mg: milligram
- mL: milliliter
- ND: not detected
- NR: not reported (no report)
- NT: not tested
- NTU: Nephelometric Turbidity Units
- ppm: parts per million or milligrams per liter (mg/L)
- ppb: parts per billion ( $\mu$ g/l)
- RCDC: Royal Center for Disease Control
- WaQMIS: Water Quality Monitoring Information System
- WHO: World Health Organization
- WTP: Water Treatment Plant

# Background

This annual Drinking Water Quality Report includes details on the Physical, Chemical and Microbiological parameters of the drinking water supplied to the communities in urban and rural areas in the year 2019. The tests are

conducted by the drinking water quality surveillance centres. There are 34 urban health centres and 274 rural health centres identifies as water quality surveillance centres. The laboratory staffs in the urban health centres and the Health Assistants in the rural health centres are trained to carry out the water quality testing.

The water quality test results from the respective health centres are compared with the standard compliance values in Bhutan Drinking Water Quality Standard (BDWQS) 2016.



#### Contaminants that may be present in Bhutan drinking water sources:

Most of the drinking water sources in Bhutan are from the streams and springs. However, with the increase in urban population and the drying of sources, rivers and ground water are also being abstracted for drinking. Since there are many drinking water sources in the country, some of the water from these sources may contain some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. Drinking water contaminants may pose a threat to human health if the quantity of the contaminant exceeds the recommended standard values. The contaminants (referred to as parameter) that require regular monitoring in Bhutan drinking water are given in the BDWQS which are classified based on risk category.

The general parameters that are currently monitored in Bhutan are:

• **Physical parameters** which primarily impact the physical appearance or other physical properties of water are Turbidity and pH of water.

- **Microbial parameters** are organisms in water such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. The measurement of direct pathogen is expensive and also time consuming. Therefore, for drinking water quality surveillance, an indicator organism is used to gauge the probability of the presence of pathogens. Currently Thermotolerant Coliform is monitored for urban drinking water quality and E. Coli for Rural drinking water quality.
- **Inorganic parameters** are chemicals such as salts and metals that can be naturally occurring or man-made that results from piping system, industrial or domestic wastewater discharges, surface runoffs, mining or farming.

# 1. Urban Drinking Water Quality Monitoring System

# **1.1.Parameters for Urban Health Centers**

- ✓ Thermotolerant Coliform
- ✓ Turbidity
- 🗸 рН
- ✓ Residual Chlorine (Wherever chlorination is carried out for disinfection)
- ✓ Color
- ✓ Odor

## **1.2.Monitoring Frequency**

The monitoring is carried out once a month and reporting is made through Water Quality Monitoring Information System (WaQMIS) every month.

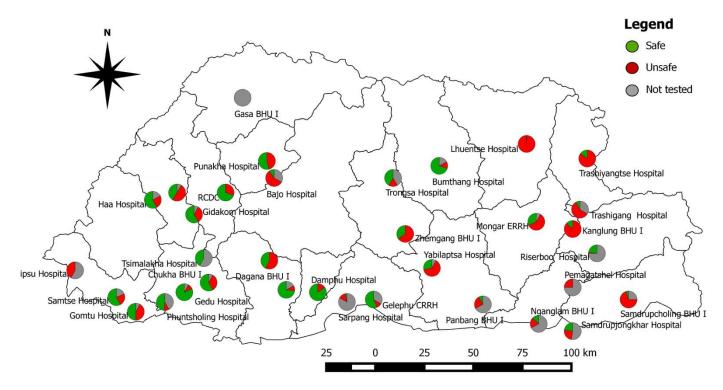
## **1.3.Water Treatment**



Most of the water treatment plants in Bhutan are using the basic treatment method with sand filters and sedimentation tanks (figure 1).

Chlorine in the form of Calcium Hypochlorite (Bleaching Powder) is used as disinfectant but only in few treatment plants.

Few treatment plants (eg.Gelephu Treatment Plant, Chamgang Water Treatemnt Plant, Trashigang Water Treatment Plant has more stages of treatment plant which includes combination of sand filters, pressure sand filters bio-ball filters and disinfection by Chlorine)


Annex 1 explains some of treatment techniques that are available across the country.

# 1.4.Report

#### **1.4.1. Bacteriology (Thermotolerant coliform)**

Thermotolerant Coliforms are bacteria that can beintroduced into drinking water supplies through human or animal faeces. For water to be considered safe, Thermotolerant Coliforms should not be detected in a 100mL sample of drinking water. If detected, it is an indication of the contamination of drinking water by faeces and also suggests that other potentially-harmful microbes may be present.

A total of 1951 samples were collected and tested for Thermotolerant coliformfrom 34 urban health centers in the country for routine water quality surveillance. Out of which 52.6% of samples were found safe (0 CFU/100mL) and rest were found unsafe (>1 CFU/100mL Thermotolerant Coliform).



#### Figure 2: Bacteriology test report of 34 hospitals/BHU-1 in urban area

The annual national surveillance data show that the samples tested by Sibsoo BHU and Pemagatshel hospital were found 100% unsafe. Similarly, reports from Lhuentse hospital and Samdrupchholing BHUI reported more than 90% of the samples unsafe. Some of the sampling points from health centers like Bumthang Hospital, Kanglung BHU I, Lhuentse Hospital, Mongar Hospital, SamdrupjongkharHospiotal, are consistently grossly polluted (>50 CFU/100mL Thermotolerat Coliform) (detail report given in *Annex 1*). On the other hand, Tsimalakha hospital tested 35 samples and all were found safe. 870 samples out of total samples are treated which are collected from WTP by 21 health centers (*see annex 1*). 59% of the total treated samples are found safe (*figure 3*). 28% of the total annual samples were not tested (*see table 2 for details*).



Figure 3: quality of treated water from urban water supply

| Dzongkhag       | Center                   | Total<br>Samples<br>to be<br>tested | Total<br>Samples<br>Tested | Safe<br>Water | Unsafe<br>water | % of<br>samples not<br>tested |
|-----------------|--------------------------|-------------------------------------|----------------------------|---------------|-----------------|-------------------------------|
| Bumthang        | Bumthang Hospital        | 84                                  | 70                         | 59            | 11              | 17                            |
| Chhukha         | Chhukha BHU I            | 48                                  | 44                         | 28            | 16              | 8                             |
| Chhukha         | Phuentsholing Hospital   | 108                                 | 63                         | 52            | 11              | 42                            |
| Chhukha         | Gedu Hospital            | 84                                  | 77                         | 69            | 8               | 8                             |
| Chhukha         | Tsimalakha Hospital      | 84                                  | 35                         | 35            | 0               | 58                            |
| Dagana          | Dagana BHU I             | 60                                  | 60                         | 26            | 34              | 0                             |
| Dagana          | Dagapela Hospital        | 60                                  | 50                         | 44            | 6               | 17                            |
| Gasa            | Gasa BHU I               | 48                                  | 0                          | 0             | 0               | 100                           |
| Наа             | Haa Hospital             | 60                                  | 50                         | 35            | 15              | 17                            |
| Lhuentse        | Lhuentse Hospital        | 72                                  | 72                         | 1             | 71              | 0                             |
| Mongar          | Monggar ERRH             | 84                                  | 77                         | 27            | 50              | 8                             |
| Paro            | Paro Hospital            | 96                                  | 88                         | 39            | 49              | 8                             |
| Pemagatshel     | Pemagatshel Hospital     | 72                                  | 18                         | 0             | 18              | 75                            |
| Pemagatshel     | Nganglam BHU I           | 60                                  | 20                         | 8             | 12              | 67                            |
| Punakha         | Punakha Hospital         | 72                                  | 72                         | 39            | 33              | 0                             |
| Samdrupjongkhar | Samdrupchholing BHU I    | 60                                  | 45                         | 3             | 42              | 25                            |
| Samdrupjongkhar | SamdrupJongkhar Hospital | 120                                 | 57                         | 27            | 30              | 53                            |
| Samtse          | Sibsoo BHU I             | 72                                  | 30                         | 0             | 30              | 58                            |
| Samtse          | Gomtu Hospital           | 72                                  | 66                         | 36            | 30              | 8                             |
| Samtse          | Samtse Hospital          | 108                                 | 88                         | 63            | 25              | 19                            |
| Sarpang         | Sarpang Hospital         | 72                                  | 12                         | 2             | 10              | 83                            |

#### Annual drinking water quality surveillance report 2019

| Sarpang         | Gelephu CRRH                        | 204  | 136  | 115  | 21  | 33 |
|-----------------|-------------------------------------|------|------|------|-----|----|
| Thimphu         | Gidakom Hospital                    | 48   | 44   | 28   | 16  | 8  |
| Thimphu         | Royal Centre for Disease<br>Control | 132  | 132  | 92   | 40  | 0  |
| Trashigang      | Trashigang Hospital                 | 48   | 32   | 4    | 28  | 33 |
| Trashigang      | Kanglung BHU I                      | 84   | 84   | 11   | 73  | 0  |
| Trashigang      | Riserboo Hospital                   | 84   | 21   | 19   | 2   | 75 |
| Trashiyangtse   | Trashi Yangtse Hospital             | 84   | 84   | 13   | 71  | 0  |
| Trongsa         | Trongsa Hospital                    | 84   | 49   | 35   | 14  | 42 |
| Tsirang         | Damphu Hospital                     | 72   | 72   | 61   | 11  | 0  |
| Wangduephodrang | Bajo Hospital                       | 84   | 56   | 8    | 48  | 33 |
| Zhemgang        | Panbang BHU I                       | 60   | 20   | 5    | 15  | 67 |
| Zhemgang        | Yebilaptsa Hospital                 | 60   | 55   | 17   | 38  | 8  |
| Zhemgang        | Zhemgang BHU I                      | 72   | 72   | 25   | 47  | 0  |
|                 |                                     | 2712 | 1951 | 1026 | 925 | 28 |



Figure 4: Seasonal variation of water quality (Based on Thermotolerant coliform report)

The annual monthly graph for Thermotolerant coliform indicates that the total number of safe wateris usually higher during dry seasons. Maximum unsafe was observed during rainy season indicating water quality has deteriorated during rainy season *(figure 4)*.

#### Table 2: Consistency in reporting

| Reporting Center                 | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Bajo Hospital                    | NR  | NR  | NR  | R   | R   | R   | R   | R   | R   | R   | R   | NR  |
| Bumthang Hospital                | NR  | R   | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Chhukha BHU I                    | R   | R   | R   | R   | R   | R   | R   | R   | NR  | R   | R   | R   |
| Dagana BHU I                     | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Dagapela Hospital                | R   | R   | R   | NR  | R   | R   | R   | R   | R   | R   | R   | NR  |
| Damphu Hospital                  | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Gasa BHU I                       | NR  |
| Gedu Hospital                    | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | NR  | R   |
| Gelephu CRRH                     | R   | R   | R   | R   | R   | NR  | R   | R   | NR  | R   | NR  | NR  |
| Gidakom Hospital                 | R   | R   | R   | R   | R   | NR  | R   | R   | R   | R   | R   | R   |
| Gomtu Hospital                   | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Haa Hospital                     | NR  | R   | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Kanglung BHU I                   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Lhuentse Hospital                | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Monggar ERRH                     | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Nganglam BHU I                   | R   | NR  | NR  | R   | NR  | NR  | NR  | NR  | R   | NR  | R   | NR  |
| Panbang BHU I                    | NR  | NR  | NR  | R   | NR  | NR  | NR  | R   | R   | NR  | NR  | R   |
| Paro Hospital                    | R   | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Pemagatshel Hospital             | R   | NR  | NR  | NR  | NR  | R   | R   | NR  | NR  | NR  | NR  | NR  |
| Phuentsholing Hospital           | R   | R   | R   | R   | NR  | R   | R   | NR  | NR  | NR  | NR  | R   |
| Punakha Hospital                 | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Riserboo Hospital                | R   | NR  | R   | NR  | NR  | NR  | NR  | R   | NR  | NR  | NR  | NR  |
| Royal Centre for Disease Control | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| SamdrupJongkhar Hospital         | NR  | NR  | NR  | NR  | NR  | R   | NR  | R   | R   | R   | R   | R   |
| Samdrupchholing BHU I            | NR  | R   | R   | NR  | R   | NR  | R   | R   | R   | R   | R   | R   |
| Samtse Hospital                  | R   | NR  | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Sarpang Hospital                 | NR  | NR  | R   | NR  | NR  | NR  | NR  | NR  | NR  | R   | NR  | NR  |
| Sibsoo BHU I                     | R   | NR  | NR  | R   | NR  | NR  | R   | R   | NR  | NR  | NR  | R   |
| Trashi Yangtse Hospital          | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |
| Trashigang Hospital              | R   | R   | R   | R   | R   | NR  | R   | R   | R   | NR  | NR  | NR  |
| Trongsa Hospital                 | R   | R   | R   | NR  | NR  | R   | R   | R   | R   | NR  | NR  | NR  |
| Tsimalakha Hospital              | R   | NR  | R   | R   | R   | NR  | NR  | R   | NR  | NR  | NR  | NR  |
| Yebilaptsa Hospital              | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | NR  |
| Zhemgang BHU I                   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |

Note: R=Reported NR=Not reported

#### 1.4.2. Physio-Chemical report

#### a) Turbidity

Turbidity is a measure of the cloudiness of the water caused by suspended particles or colloidal matter. It indicates the effectiveness of the treatment plants. Although turbidity may not have direct health effect it may have a negative impact on consumer acceptability

A total of 1662 samples were



Figure 5: wire mesh used to remove debris to reduce turbidity in some rural water supply

monitored for turbidity from 34 urban health centers for routine water quality surveillance. Out of which 94.7% of the samples were found within acceptable limit (<5NTU).

The figure 6 indicates maximum number of turbid samples observed in August followed by February, May and September. The detailed monthly variation of turbidity is given in Annex 2



#### Figure 6: Seasonal variation of turbidity from 34 health centers

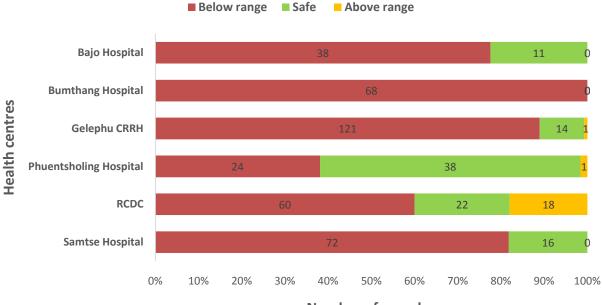
#### Table 3: Turbidity Compliance

| Dzongkhag       | Center                           | Compliant ( <u>&lt;</u> 5 NTU) | Non compliant (><br>5NTU) |
|-----------------|----------------------------------|--------------------------------|---------------------------|
| Bumthang        | Bumthang Hospital                | 70                             | 0                         |
| Chhukha         | Chhukha BHU I                    | 38                             | 6                         |
| Chhukha         | Gedu Hospital                    | 77                             | 0                         |
| Chhukha         | Phuentsholing Hospital           | 63                             | 0                         |
| Chhukha         | Tsimalakha Hospital              | 35                             | 0                         |
| Dagana          | Dagana BHU I                     | 60                             | 0                         |
| Dagana          | Dagapela Hospital                | 50                             | 0                         |
| Gasa            | Gasa BHU I                       | 0                              | 0                         |
| Наа             | Haa Hospital                     | 50                             | 0                         |
| Lhuentse        | Lhuentse Hospital                | 72                             | 0                         |
| Mongar          | Monggar ERRH                     | 66                             | 11                        |
| Paro            | Paro Hospital                    | 80                             | 8                         |
| Pemagatshel     | Nganglam BHU I                   | 20                             | 0                         |
| Pemagatshel     | Pemagatshel Hospital             | 18                             | 0                         |
| Punakha         | Punakha Hospital                 | 72                             | 0                         |
| Samdrupjongkhar | SamdrupJongkhar Hospital         | 45                             | 12                        |
| Samdrupjongkhar | Samdrupchholing BHU I            | 42                             | 3                         |
| Samtse          | Gomtu Hospital                   | 66                             | 0                         |
| Samtse          | Samtse Hospital                  | 82                             | 6                         |
| Samtse          | Sibsoo BHU I                     | 29                             | 1                         |
| Sarpang         | Gelephu CRRH                     | 136                            | 0                         |
| Sarpang         | Sarpang Hospital                 | 11                             | 1                         |
| Thimphu         | Gidakom Hospital                 | 39                             | 5                         |
| Thimphu         | Royal Centre for Disease Control | 128                            | 4                         |
| Trashigang      | Kanglung BHU I                   | 84                             | 0                         |
| Trashigang      | Riserboo Hospital                | 21                             | 0                         |
| Trashigang      | Trashigang Hospital              | 32                             | 0                         |
| Trashiyangtse   | Trashi Yangtse Hospital          | 76                             | 8                         |
| Trongsa         | Trongsa Hospital                 | 49                             | 0                         |
| Tsirang         | Damphu Hospital                  | 64                             | 8                         |
| Wangduephodrang | Bajo Hospital                    | 54                             | 2                         |
| Zhemgang        | Panbang BHU I                    | 20                             | 0                         |
| Zhemgang        | Yebilaptsa Hospital              | 54                             | 1                         |
| Zhemgang        | Zhemgang BHU I                   | 61                             | 11                        |
|                 |                                  | 1864                           | 87                        |

#### b) pH

The allowable range for pH is 6.5 to 8.5 as per BDWQS. Out of 1803 samples tested only 2.5% of the samples were found non-compliant. The highest pH tested was found to be 9 and the lowest value was tested 5.




#### c) Chlorine

Out of 34 urban reporting centers, only six health centers (Bajo, Bumthang, Gelephu, Phuntsholing, RCDC and Samtse) monitor chlorine level in drinking water as there are no treatment facilities in other urban areas or some treatment plant do not use chlorine for disinfection.

A total of672 treated samples were tested for Residual Chlorine. Out of which only18.90% were adequately chlorinated. From rest of the samples 76.19% were either not chlorinated or were found below

0.2mg/L of residual chlorine while 4.91% exceeded the recommend

Figure 7:Chlorine dosing machine used in residual chlorine level in drinking water i.e>5mg/L. (figure 8).



Number of samples

#### 1.4.3. Chemical report

The water samples were analyzed for the concentration of soluble heavy metals. The concentration of heavy metals in most of the samples was within the acceptable limit. In a few samples metal concentration was below the detection limit and in most of the samples metals was not detected. Some of the samples were not tested for few parameters.

- In samples from Chhukha and Zhemgang Arsenic was found in higher concentration which was almost equivalent to recommended level in BDWQS.
- In a sample from Chhukha Cadmium is found to be 0.034 ppm it is above the permissible limit of 0.003 ppm as per recommended level in WHO guideline for drinking water quality.
- In sample some samples from Bumthang, Chhukha and Punakha Lead content were found to be 0.029 ppm, 0.042 ppm and 0.014 ppm respectively, which is above the permissible limit of 0.01 ppm.
- In sample some samples from Bumthang, Chhukha, Punakha and Thimphu Iron content were found to be 0.531 ppm, 0.305 ppm, 0.458 ppm and 0.337 ppm respectively, which is above the permissible limit of 0.3 ppm

## **1.4.4. Major Sources of Chemical contaminants in drinking water:**

- a) Arsenic
  - Arsenic has been linked to a number of cancers and also has some health effects.
  - It can contaminate drinking water through erosion of natural deposits and is feasible to achieve arsenic concentrations of 10 μg/l should be achievable by conventional treatment (e.g. coagulation).
- b) Cadmium
  - There is no evidence of carcinogenicity of Cadmium by the oral route but it can be carcinogenic by the inhalation route. The kidney is the main target organ for cadmium toxicity.

Cadmium is commonly used in batteries. They can be release to environment and water from fertilizers. Cadmium can alsocontaminate drinking water by impurities in the zinc of galvanized pipes and solders and some metal fittings. It can be treated by coagulation.

#### c) Lead

- If present, increased levels of lead can cause serious health issues including various neurodevelopmental effects, mortality (mainly due to cardiovascular diseases), impaired renal function, hypertension, impaired fertility and adverse pregnancy outcomes.
- Lead in drinking water is primarily from materials and components associated with service lines and home

#### d) Iron

Iron is abundantly found in earth's crust. Iron may also be present in drinking-water as a result of the use of iron coagulants or the corrosion of cast iron pipes during water distribution. Though it is not of health concern at the level found in drinking water, it may affect acceptability of drinking water beyond recommended level

#### Table 4: Chemical Test reports from 44 urban sampling points

| SI. | Dzongkhag   | Parameter                                    | Al     | As     | Ва     | Cd     | Cr    | Cu     | Mn     | Ni   | Pb    | Se   | Zn     | Fe    |
|-----|-------------|----------------------------------------------|--------|--------|--------|--------|-------|--------|--------|------|-------|------|--------|-------|
| No. |             | BDWQS (ppm)                                  |        | 0.01   |        |        |       |        | 0.4    |      | 0.01  |      |        | 0.3   |
|     |             | WHO (ppm)                                    | 0.9    | 0.01   | 0.7    | 0.003  | 0.05  | 2      | 0      | 0.07 | 0.01  | 0.04 | 3      |       |
|     |             | Treatment Plant                              |        |        |        |        |       |        |        |      |       |      |        |       |
| 1   | Bumthang    | BumthangLamaygoenpa                          | 0.0297 | 0.0062 | ND     | ND     | ND    | ND     | 0.0022 | ND   | ND    | ND   | 0.0112 | NT    |
| 2   | Bumthang    | Nasphel water source                         | NT     | NT     | NT     | 0.002  | 0.011 | 0.004  | 0.004  | ND   | 0.029 | NT   | 0.011  | 0.531 |
| 3   | Chhukha     | Phuentsholing Booster<br>tank                | 0.0493 | 0.0035 | 0.0507 | ND     | ND    | 0.0025 | 0.0013 | ND   | ND    | ND   | 0.0155 | NT    |
| 4   | Chhukha     | Phuentsholing WTP                            | ND     | BDL    | 0.0060 | 0.0007 | ND    | 0.0010 | ND     | ND   | ND    | ND   | 0.0145 | NT    |
| 5   | Chhukha     | Tsimalakha water<br>supply tank              | 0.0658 | 0.0017 | 0.0033 | 0.0005 | ND    | 0.0013 | 0.0077 | ND   | ND    | ND   | 0.0883 | NT    |
| 6   | Chhukha     | Tsimalakha near Central<br>School            | 0.0163 | 0.0105 | 0.0040 | ND     | ND    | 0.0013 | 0.0027 | ND   | ND    | ND   | 0.0095 | NT    |
| 7   | Chhukha     | Kabreytar Treatment<br>Plant (Phuentsholing) | NT     | NT     | NT     | 0.034  | 0.036 | 0.037  | 0.037  | ND   | 0.042 | NT   | 0.073  | 0.305 |
| 8   | Chhukha     | Gedu Treatment plant                         | NT     | NT     | NT     | ND     | ND    | ND     | ND     | ND   | ND    | NT   | ND     | ND    |
| 9   | Dagana      | Dagana                                       | 0.0267 | ND     | ND     | ND     | ND    | 0.0012 | 0.0010 | ND   | ND    | ND   | 0.0127 | NT    |
| 10  | Dagana      | Dagapela town                                | 0.0243 | 0.0002 | 0.0030 | ND     | ND    | 0.0022 | 0.0015 | ND   | ND    | ND   | 0.0208 | NT    |
| 11  | Dagana      | Dagapela                                     | NT     | NT     | NT     | BDL    | BDL   | 0.001  | 0.003  | ND   | 0.004 | NT   | 0.008  | 0.122 |
| 12  | Gasa        | Gasa urban water supply                      | NT     | NT     | NT     | ND     | BDL   | 0.002  | 0.005  | ND   | 0.006 | NT   | 0.028  | 0.158 |
| 13  | Наа         | Haa urban water supply                       | NT     | NT     | NT     | 0.001  | BDL   | 0.001  | 0.003  | ND   | 0.004 | NT   | 0.011  | 0.125 |
| 14  | Lhuentse    | Lhuentse treatment<br>plant                  | NT     | NT     | NT     | ND     | BDL   | 0.001  | 0.013  | ND   | 0.004 | NT   | 0.008  | 0.189 |
| 15  | Mongar      | Yankpongang urban water supply               | NT     | NT     | NT     | ND     | BDL   | 0      | 0.02   | ND   | 0.002 | NT   | 0.002  | 0.106 |
| 16  | Mongar      | Zimzorong urban water supply                 | NT     | NT     | NT     | ND     | BDL   | 0.006  | 0.019  | ND   | 0.002 | NT   | 0.015  | 0.147 |
| 17  | Panbang     | Panbang urban water supply                   | ND     | ND     | 0.0730 | 0.0007 | ND    | 0.0013 | 0.0010 | ND   | ND    | ND   | 0.0120 | NT    |
| 18  | Panbang     | Panbang town                                 | ND     | 0.0068 | 0.0737 | ND     | ND    | ND     | 0.0010 | ND   | ND    | ND   | 0.0135 | NT    |
| 19  | Pemagatshel | Pemagatshel Hospital                         | 0.0220 | ND     | 0.0215 | 0.0013 | ND    | 0.0087 | ND     | ND   | ND    | ND   | 0.1490 | NT    |
| 20  | Pemagatshel | PemagatshelTsangtseri                        | 0.0503 | 0.0023 | 0.0310 | 0.0013 | ND    | 0.0063 | 0.0010 | ND   | ND    | ND   | 0.0057 | NT    |
| 21  | Pemagatshel | Ngangam town A                               | NT     | NT     | NT     | ND     | BDL   | 0.001  | 0.024  | ND   | 0.003 | NT   | 0.004  | 0.273 |

Annual drinking water quality surveillance report 2019

|    |                 |                                    |        |        |        |        |      |        |        |    |       |    |        | 1 C C C C C C C C C C C C C C C C C C C |
|----|-----------------|------------------------------------|--------|--------|--------|--------|------|--------|--------|----|-------|----|--------|-----------------------------------------|
| 22 | Punakha         | Kabesa source                      | NT     | NT     | NT     | ND     | BDL  | 0.005  | 0.008  | ND | 0.014 | NT | 0.335  | 0.458                                   |
| 23 | Samdrupjongkhar | Charkilo source                    | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.031  | ND | 0.002 | NT | 0.007  | 0.161                                   |
| 24 | Samdrupjongkhar | Phuntshothang<br>(Samdrupchholing) | NT     | NT     | NT     | BDL    | BDL  | 0.002  | 0.006  | ND | 0.004 | NT | 0.004  | 0.104                                   |
| 25 | Samtse          | Tashicholing (Sibsoo)              | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.001  | ND | 0.003 | NT | 0.005  | 0.135                                   |
| 26 | Samtse          | Samtse Treatment plant             | NT     | NT     | NT     | ND     | BDL  | 0.002  | 0.001  | ND | 0.003 | NT | 0.029  | 0.085                                   |
| 27 | Samtse          | Gomtu urban water<br>supply        | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.003  | ND | 0.002 | NT | 0.011  | 0.069                                   |
| 28 | Sarpang         | Sarpang urban water supply         | ND     | 0.0055 | 0.0050 | 0.0005 | ND   | ND     | ND     | ND | ND    | ND | 0.1393 | NT                                      |
| 29 | Sarpang         | Lodrai source                      | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.001  | ND | 0.001 | NT | 0.001  | ND                                      |
| 30 | Thimphu         | Gidakom Reservoir tank             | 0.0477 | ND     | 0.0045 | 0.0008 | ND   | 0.0040 | 0.0030 | ND | ND    | ND | 0.1280 | NT                                      |
| 31 | Thimphu         | Jangsa Treatment Plant             | NT     | NT     | NT     | ND     | BDL  | 0.004  | 0.002  | ND | 0.004 | NT | 0.022  | 0.101                                   |
| 32 | Thimphu         | Motithang Treatment<br>Plant       | NT     | NT     | NT     | BDL    | 0.01 | 0.003  | 0.006  | ND | 0.005 | NT | 0.011  | 0.337                                   |
| 33 | Thimphu         | Jungshina Treatment<br>Plant       | NT     | NT     | NT     | BDL    | BDL  | 0.003  | 0.004  | ND | 0.005 | NT | 0.031  | 0.215                                   |
| 34 | Trashigang      | Kanglung college                   | 0.0917 | ND     | ND     | 0.0005 | ND   | 0.0012 | 0.0027 | ND | ND    | ND | 0.0137 | NT                                      |
| 35 | Trashigang      | Wamrong town                       | 0.0210 | ND     | 0.0425 | 0.0005 | ND   | 0.0015 | 0.0030 | ND | ND    | ND | 0.1325 | NT                                      |
| 36 | Trashigang      | Trashigang Treatment<br>Plant      | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.008  | ND | 0.003 | NT | 0.004  | 0.175                                   |
| 37 | Trashigang      | Rangjung Treatment<br>Plant        | NT     | NT     | NT     | ND     | BDL  | BDL    | 0.016  | ND | 0.002 | NT | 0.136  | 0.093                                   |
| 38 | Trashiyangtse   | Trashiyangtse                      | NT     | NT     | NT     | ND     | BDL  | 0      | 0.017  | ND | 0.004 | NT | 0.018  | 0.089                                   |
| 39 | Trongsa         | Trongsa Treatment<br>plant         | NT     | NT     | NT     | BDL    | BDL  | 0.001  | 0.012  | ND | 0.004 | NT | 0.019  | 0.186                                   |
| 40 | Tsirang         | Damphu Treatment<br>Plant          | NT     | NT     | NT     | ND     | BDL  | 0.004  | 0.011  | ND | 0.008 | NT | 0.444  | 0.118                                   |
| 41 | Wangdiphodrang  | Bajo Treatment Plant               | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.021  | ND | 0.003 | NT | 0.01   | 0.209                                   |
| 42 | Zhemgang        | Yebilaptsa Hospital                | 0.0623 | 0.0108 | 0.0185 | ND     | ND   | 0.0012 | 0.0043 | ND | ND    | ND | 0.0177 | NT                                      |
| 43 | Zhemgang        | Zhemgang Treatment<br>Plant        | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.007  | ND | 0.005 | NT | 0.018  | 0.108                                   |
| 44 | Zhemgang        | Tingtibi Treatment Plant           | NT     | NT     | NT     | ND     | BDL  | 0.001  | 0.004  | ND | 0.004 | NT | 0.206  | 0.151                                   |
|    |                 |                                    |        |        |        |        |      |        |        |    |       |    |        |                                         |

# 2. Rural Drinking Water Quality Monitoring (RDWQM)



## 2.1. Overall status

RDWQM is carried out bi-annually (once in February-March and once in July-August) by 255 health centers from across the country. Unlike urban drinking water quality monitoring, currently only Escherichia Coli (E. Coli), appearance and odor are monitored for rural drinking water quality monitoring. E. Coli is tested using 3M Petrifilm E.Coli test kit.

## 2.2. Report

A total of 1854 samples were collected and tested for E. Coli. Out of which almost 65.32

% is found safe. From the unsafe samples, 31.28% is of low health risk category, 3.34 % is intermediate to high health risk and 0.05% were grossly polluted(Detailed health risk category of the samples are shown in figure 9). Most of the samples are found unsafe in wet season as depicted in *figure 9* and *table 5* 



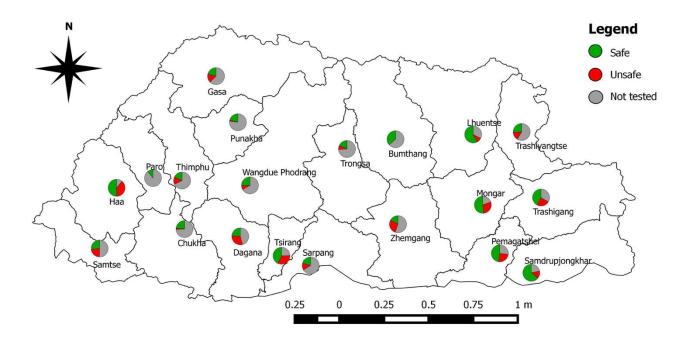



Figure 9: Overall rural drinking water quality in terms of Thermotolerant coliform at dzongkhag level

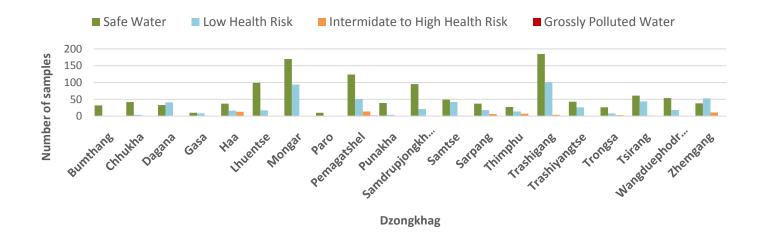
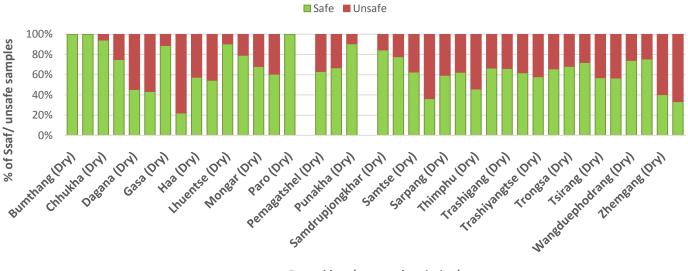




Figure 10: Health risk category of the water quality results from different dzongkhags

#### Annual drinking water quality surveillance report 2019



Dzongkhag (seasonal variation)

Figure 11: Seasonal variation of rural drinking water quality

#### Table 5: Seasonal variation of water quality in rural area

| SI. No. | Dzongkhag       | Safe (Wet) | Unsafe (Wet) | Safe (Dry) | Unsafe (Dry) |
|---------|-----------------|------------|--------------|------------|--------------|
| 1       | Bumthang        | 12         | 0            | 20         | 0            |
| 2       | Chhukha         | 9          | 3            | 33         | 2            |
| 3       | Dagana          | 13         | 17           | 20         | 24           |
| 4       | Gasa            | 2          | 7            | 8          | 1            |
| 5       | Наа             | 18         | 15           | 19         | 14           |
| 6       | Lhuentse        | 42         | 11           | 57         | 6            |
| 7       | Mongar          | 80         | 52           | 90         | 42           |
| 8       | Paro            | 0          | 0            | 10         | 0            |
| 9       | Pemagatshel     | 69         | 34           | 55         | 32           |
| 10      | Punakha         | 0          | 0            | 39         | 4            |
| 11      | Samdrupjongkhar | 35         | 10           | 60         | 11           |
| 12      | Samtse          | 12         | 21           | 37         | 22           |
| 13      | Sarpang         | 15         | 9            | 22         | 15           |
| 14      | Thimphu         | 16         | 8            | 11         | 13           |
| 15      | Trashigang      | 103        | 63           | 82         | 42           |
| 16      | Trashiyangtse   | 25         | 13           | 18         | 13           |
| 17      | Trongsa         | 13         | 5            | 13         | 6            |
| 18      | Tsirang         | 29         | 22           | 32         | 24           |
| 19      | Wangduephodrang | 31         | 10           | 23         | 8            |
| 20      | Zhemgang        | 15         | 30           | 23         | 34           |

## 3. Limitation of the report

1. All the data are collected from Water Quality Monitoring Information System (WaQMIS)

- 2. Some health centers have not reported consistently
- 3. Some dzongkhags have more health centers and consequently more sampling stations compared to other districts.
- 4. Some of the water monitoring sites have private water sources (eg.in some schools). This report includes all the water samples monitored by surveillance sites both urban water supply and private water supplies.

#### 4. Issues and recommendation:

1. Some of the treatment facilities are not utilized and are bypassed due to increased demand from the consumers (eg.LhuentseWTP, Mongar WTP, Trashiyangtse WTP and Haa WTP)



Figure 12: Underutilized treatment plants

Recommendation: There is need to make optimum use of all the treatment plant facilities to improve existing water quality.

 Most of the caretakers handling water treatment plants are not trained to operate treatment plant and

many of them do not have minimum required qualification (Annex1).



Figure 13: pipelines laid out through storm water drain and abandoned chlorination tank

Recommendation: minimum training must be provided to all the water caretakers in handling chlorine and performing treatment.

- 3. There is no action taken on the report submitted to dzongkhags from surveillance body. *Recommendation: see recommendations under section 4.1*
- 4. Operational monitoring is not conducted in most of the treatment plant. Recommendation: It is important to conduct operational monitoring of all the water treatment plants to improve water quality supplied to the consumer.

# 4.1.Recommendations from WaterCaRD (Water Capacity Rating Diagnostic) Assessment

To improve the drinking water quality surveillance, a assessment was carried out using a n assessment tool called WaterCARD. This assessment includes a more detailed review of water quality surveillance and associated remedial responses to strengthen understanding and inform action planning. It was applied to examine water quality testing practices, monitoring record reviews, sanitary inspections, and data management and use.

From the assessment there are some critical recommendations as follows:

- a) Elevated E. coli levels in municipal distribution systems should always be compared against free chlorine levels. Adequate free chlorine levels in the distribution systems (greater than or equal to 0.2 mg/L should significantly reduce the noted thermotolerant bacteria levels).
- b) Free chlorine levels in municipal distribution systems should be closely monitored.
- c) District hospitals should share their water quality surveillance data with municipalities on a regular basis.
- d) The linking of RCDC's and MoWHS' databases should be linked as reportedly planned. In addition, coordination meetings on a regular basis at the district level between at a minimum district water engineer(s) and district hospital Water Quality lab contact/lead are recommended.
- e) Enforcement actions should be prioritized based on potential impact to public health. Recommend that all WQ problem-related remedial actions taken in response to noncompliance with the 2016 drinking water standard be documented in writing at a

minimum in a logbook. It should be formally clarified which institution will be responsible for water quality enforcement actions. Regular meetings among agencies implementing water quality surveillance would be useful to coordinate related outreach approaches. The BDWQS 2016 states that the NEC Secretariat shall: "Coordinate meetings among the implementing agencies for the effective implementation of the standard at least once a year."

- f) Regular sharing of municipal WTP operational data with district hospitals will allow the district hospital to observe the lack of chlorine testing.
- g) District level coordination meetings on a regular basis between at a minimum district water engineer(s) and district hospital Water Quality lab contact/lead to discuss such issues are recommended.

# 5. Annex1: Urban Water Treatment Plant details

|       | Urban Drinking Water Treatment Plants |             |             |                       |                           |                             |                                                      |                   |                                        |  |  |  |
|-------|---------------------------------------|-------------|-------------|-----------------------|---------------------------|-----------------------------|------------------------------------------------------|-------------------|----------------------------------------|--|--|--|
|       |                                       |             | Treatn      | nent type             |                           |                             | Availability of resources (equipment/human resource) |                   |                                        |  |  |  |
| Sl.no | Dzongkhag                             | Source type | Sand filter | Sedimentation<br>tank | Operational<br>Monitoring | Disinfection<br>by Chlorine | Turbidity<br>meter                                   | Chlorine<br>meter | Trained<br>caretaker<br>(Chlorination) |  |  |  |
| 1     | Lhuntse                               | Stream      | Yes         | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 2     | Mongar                                | Stream      | Yes         | Yes                   | Yes                       | Yes                         | Yes                                                  | No                | Yes                                    |  |  |  |
| 3     | Trashiyangtse                         | Stream      | Yes         | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 4     | Rangjung                              | Stream      | Yes         | No                    | Yes                       | Yes                         | No                                                   | Yes               | Yes                                    |  |  |  |
| 5     | Trashigang                            | Stream      | Yes         | Yes                   | Yes                       | Yes                         | Yes                                                  | Yes               | No                                     |  |  |  |
| 6     | Kanglung                              | Stream      | No          | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 7     | Wamrong                               | Stream      | No          | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 8     | Pemagatshel                           | Stream      | No          | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 9     | Bangtar                               | Stream      | No          | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 10    | S/Jongkhar                            | Stream      | No          | No                    | Yes                       | Yes                         | No                                                   | No                | No                                     |  |  |  |
| 11    | Nganglam                              | Stream      | No          | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 12    | Punakha                               | Stream      | Yes         | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 13    | Gasa                                  | Spring      | No          | No                    | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 14    | Gidakom                               | Stream      | No          | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 15    | Наа                                   | Stream      | Yes         | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 16    | Paro                                  | River       | No          | Yes                   | Yes                       | Yes                         | Yes                                                  | Yes               | No                                     |  |  |  |
| 17    | Tsimalakha                            | Stream      | No          | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |
| 18    | Chukha                                | Stream      | No          | Yes                   | No                        | No                          | No                                                   | No                | No                                     |  |  |  |

Annual drinking water quality surveillance report 2019

| 19 | Gedu                                      | Stream | Yes | Yes | No  | Yes | No  | No  | No  |
|----|-------------------------------------------|--------|-----|-----|-----|-----|-----|-----|-----|
| 21 | Phuntsholing,<br>South Treatment<br>Plant | Stream | Yes | Yes | Yes | Yes | No  | No  | No  |
| 22 | Phuntsholing,<br>Kabreytar                | Stream | Yes | Yes | Yes | Yes | No  | No  | Yes |
| 23 | TrashiChholing,<br>Sibsu                  | Stream | No  | No  | No  | Yes | No  | No  | No  |
| 24 | Samtse                                    | River  | Yes | Yes | Yes | Yes | Yes | No  | Yes |
| 25 | Gomtu                                     | Stream | Yes | Yes | Yes | Yes | No  | No  | Yes |
| 26 | Wangdue                                   | Stream | Yes |
| 27 | Trongsa                                   | Stream | Yes | Yes | No  | Yes | Yes | Yes | Yes |
| 28 | Zhemgang                                  | Stream | Yes | Yes | Yes | Yes | No  | No  | No  |
| 29 | Panbang (BHU-I)                           | Stream | No  |
| 30 | Panbang<br>(Market)                       | Stream | No  |
| 31 | Yebilaptsa<br>(Hospital)                  | Stream | No  |
| 32 | Yebilaptsa<br>(Tingtibi)                  | Stream | Yes | Yes | No  | Yes | No  | No  | Yes |
| 33 | Damphu                                    | Stream | No  |
| 34 | Dagapela<br>(Hospital)                    | Stream | No  |
| 35 | Dagapela<br>(Market)                      | Stream | No  |
| 36 | Dagana                                    | Stream | Yes |
| 37 | Gelephu (Lodrai)                          | Stream | Yes |
| 38 | Gelephu (Mao<br>Khola)                    | River  | Yes |
| 39 | Sarpang                                   | Stream | No  | Yes | No  | Yes | Yes | Yes | Yes |